Environmental Protection Agency

material, if a value other than 1.0 is used to calculate process mass emissions of CO_2 .

- (7) Method used to determine fraction of calcination.
- (8) Total number of continuous glass melting furnaces.
- (9) The number of times in the reporting year that missing data procedures were followed to measure monthly quantities of carbonate-based raw materials or mass fraction of the carbonate-based minerals for any continuous glass melting furnace (months).

[74 FR 56374, Oct. 30, 2009, as amended at 75 FR 66462, Oct. 28, 2010]

§98.147 Records that must be retained.

In addition to the information required by §98.3(g), you must retain the records listed in paragraphs (a), (b), and (c) of this section.

- (a) If a CEMS is used to measure emissions, then you must retain the records required under §98.37 for the Tier 4 Calculation Methodology and the following information specified in paragraphs (a)(1) and (a)(2) of this section:
- (1) Monthly glass production rate for each continuous glass melting furnace (tons).
- (2) Monthly amount of each carbonate-based raw material charged to each continuous glass melting furnace (tons).
- (b) If process CO₂ emissions are calculated according to the procedures specified in §98.143(b), you must retain the records in paragraphs (b)(1) through (b)(5) of this section.

- (1) Monthly glass production rate for each continuous glass melting furnace (metric tons).
- (2) Monthly amount of each carbonate-based raw material charged to each continuous glass melting furnace (metric tons).
- (3) Data on carbonate-based mineral mass fractions provided by the raw material supplier for all raw materials consumed annually and included in calculating process emissions in Equation N-1 of this subpart.
- (4) Results of all tests used to verify the carbonate-based mineral mass fraction for each carbonate-based raw material charged to a continuous glass melting furnace, including the data specified in paragraphs (b)(4)(i) through (b)(4)(v) of this section.
 - (i) Date of test.
- (ii) Method(s), and any variations of the methods, used in the analyses.
- (iii) Mass fraction of each sample analyzed.
- (iv) Relevant calibration data for the instrument(s) used in the analyses.
- (v) Name and address of laboratory that conducted the tests.
- (5) The fraction of calcination achieved for each carbonate-based raw material (percentage, expressed as a decimal), if a value other than 1.0 is used to calculate process mass emissions of CO_2 .
- (c) All other documentation used to support the reported GHG emissions.

§ 98.148 Definitions.

All terms used in this subpart have the same meaning given in the Clean Air Act and subpart A of this part.

Table N-1 to Subpart N of Part 98—CO $_2$ Emission Factors for Carbonate-Based Raw Materials

Carbonate-based raw material—mineral	CO ₂ emis- sion factor ^a
Limestone—CaCO ₃	0.440
Dolomite—CaMg(CO ₃) ₂	0.477
Sodium carbonate/soda ash—Na ₂ CO ₃	0.415
Barium carbonate—BaCO ₃	0.223
Potassium carbonate—K ₂ CO ₃	0.318
Lithium carbonate (Li ₂ CO ₃)	0.596
Strontium carbonate (SrCO ₃)	0.298

 $^{^{\}rm a}$ Emission factors in units of metric tons of CO $_{\rm 2}$ emitted per metric ton of carbonate-based raw material charged to the furnace.

 $[74~{\rm FR}~56374,~{\rm Oct.}~30,~2009,~{\rm as~amended~at}~75~{\rm FR}~66462$, Oct. 28,~2010]

Subpart O—HCFC–22 Production and HFC–23 Destruction

§98.150 Definition of the source category.

The HCFC-22 production and HFC-23 destruction source category consists of HCFC-22 production processes and HFC-23 destruction processes.

§ 98.151

- (a) An HCFC-22 production process produces HCFC-22 (chlorodifluoromethane, or CHClF₂) from chloroform (CHCl₃) and hydrogen fluoride (HF).
- (b) An HFC-23 destruction process is any process in which HFC-23 undergoes destruction. An HFC-23 destruction process may or may not be co-located with an HCFC-22 production process at the same facility.

§98.151 Reporting threshold.

You must report GHG emissions under this subpart if your facility contains an HCFC-22 production or HFC-23 destruction process and the facility meets the requirements of either §98.2(a)(1) or (a)(2).

§ 98.152 GHGs to report.

- (a) You must report under subpart C of this part (General Stationary Fuel Combustion Sources) the emissions of CO_2 , CH_4 , and N_2O from each stationary combustion unit following the requirements of subpart C.
- (b) You must report HFC-23 emissions from HCFC-22 production processes and HFC-23 destruction processes

§ 98.153 Calculating GHG emissions.

- (a) The mass of HFC-23 generated from each HCFC-22 production process shall be estimated by using one of two methods, as applicable:
- (1) Where the mass flow of the combined stream of HFC-23 and another reaction product (e.g., HCl) is measured, multiply the weekly (or more frequent) HFC-23 concentration measurement (which may be the average of more frequent concentration measurements) by the weekly (or more frequent) mass flow of the combined stream of HFC-23 and the other product. To estimate annual HFC-23 production, sum the weekly (or more frequent) estimates of the quantities of HFC-23 produced over the year. This calculation is summarized in Equation O-1 of this section:

$$G_{23} = \sum_{p=1}^{n} c_{23} * F_p * 10^{-3}$$
 (Eq. O-1)

Where:

- G_{23} = Mass of HFC-23 generated annually (metric tons).
- c_{23} = Fraction HFC-23 by weight in HFC-23/other product stream.
- F_p = Mass flow of HFC-23/other product stream during the period p (kg).
- p = Period over which mass flows and concentrations are measured.
- n = Number of concentration and flow measurement periods for the year.
- 10^{-3} = Conversion factor from kilograms to metric tons.
- (2) Where the mass of only a reaction product other than HFC-23 (either HCFC-22 or HCl) is measured, multiply the ratio of the weekly (or more frequent) measurement of the HFC-23 concentration and the weekly (or more frequent) measurement of the other product concentration by the weekly (or more frequent) mass produced of the other product. To estimate annual HFC-23 production, sum the weekly (or more frequent) estimates of the quantities of HFC-23 produced over the year. This calculation is summarized in Equation O-2 of this section, assuming that the other product is HCFC-22. If the other product is HCl, HCl may be substituted for HCFC-22 in Equations O-2 and O-3 of this section.

$$G_{23} = \sum_{p=1}^{n} \left(\frac{c_{23}}{c_{22}}\right) * P_{22} * 10^{-3}$$
 (Eq. O-2)

Where

- G_{23} = Mass of HFC-23 generated annually (metric tons).
- c₂₃ = Fraction HFC-23 by weight in HCFC-22/ HFC-23 stream.
- c₂₂ = Fraction HCFC-22 by weight in HCFC-22/HFC-23 stream.
- $P_{22}=$ Mass of HCFC-22 produced over the period p (kg), calculated using Equation O-3 of this section.
- p = Period over which masses and concentrations are measured.
- n = Number of concentration and mass measurement periods for the year.
- 10^{-3} = Conversion factor from kilograms to metric tons.
- (b) The mass of HCFC-22 produced over the period p shall be estimated by using Equation O-3 of this section:

$$P_{22} = LF * (O_{22} - U_{22})$$
 (Eq. O-3)

Where

 $P_{22} = Mass of HCFC-22$ produced over the period p (kg).